Анаэробные и аэробные механизмы энергообеспечения. Механизмы энергообеспечения при мышечной работе Путь энергетического обеспечения мышечной деятельности который заключается

Работающим мышцам необходима энергия. Следовательно, любая физическая нагрузка требует поставки энергии. В нашем организме существуют разные системы энергообеспечения, каждая из которых имеет свои особенности. Составление оптимальной тренировочной программы возможно только при хорошем знании принципов энергообеспечения.

Если прислушаться к своему организму, то можно достаточно точно установить, какая именно из систем в данный момент задействована для снабжения работающих мышц энергией. Однако, на практике, многие спортсмены не прислушиваются к сигналам своего организма, в соответствии с которыми они могли бы вносить изменения в свою тренировочную программу. Многие спортсмены тренируются слишком интенсивно или слишком однообразно, некоторые тренируются с чрезмерно низкой интенсивностью. Как бы то ни было, ни те, ни другие, никогда не смогут достичь желаемых результатов. Установить оптимальную тренировочную интенсивность можно двумя способами: при помощи замеров уровня лактата (молочной кислоты) в крови или при помощи регистрации частоты сердечных сокращений (ЧСС). Используя оба или один из этих методов, спортсмены часто добиваются более высоких результатов даже при меньшем объеме и интенсивности тренировок.

Энергетические системы

В организме человека существует такое высокоэнергетическое химическое вещество как аденозинтрифосфат (АТФ), которое является универсальным источником энергии. Во время мышечной деятельности АТФ распадается до аденозинфосфата (АДФ). В ходе этой реакции высвобождается энергия, которая непосредственно используется мышцами для энергии.

АТФ -> АДФ + энергия

организме поддерживается относительное постоянство этого вещества, что позволяет мышцам работать без остановки.

Выделяют три основных системы ресинтеза АТФ: фосфатную, лактат-ную и кислородную.

Фосфатная система

Фосфатный механизм ресинтеза АТФ включает использование имеющихся запасов АТФ в мышцах и быстрый ее ресинтез за счет высокоэнергетического вещества креатинфосфата (КрФ), запасы которого в мышцах ограничиваются 6-8 с интенсивной работы. Реакция ресинтеза АТФ с участием КрФ выглядит следующим образом:

КрФ + АДФ → АТФ + креатин

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с - КрФ. Такая последовательность наблюдается при любой интенсивной физической деятельности. Фосфатная система важна для спринтеров, футболистов, прыгунов в высоту и длину, метателей диска, боксеров и теннисистов, то есть для всех взрывных, кратковременных, стремительных и энергичных видов физической деятельности.

Скорость ресинтеза КрФ после прекращения физической нагрузки также очень высока. Запасы высокоэнергетических фосфатов (АТФ и КрФ), израсходованных во время нагрузки, восполняются в течение нескольких минут после ее завершения. Уже через 30 с запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 мин восстанавливаются полностью.

Для тренировки фосфатной системы используются резкие, непродолжительные, мощные упражнения, чередующиеся с отрезками отдыха. Отрезки отдыха должны быть достаточно длительными, чтобы успевал происходить ресинтез АТФ и КрФ (график 1).

Уже через 8 недель спринтерских (скоростных) тренировок значительно увеличивается количество ферментов, которые отвечают за распад и ре-синтез АТФ. Если АТФ распадается быстрее, то, следовательно, и высвобождение энергии происходит быстрее. Таким образом, тренировка не только повышает запасы АТФ и КрФ, но и ускоряет процесс распада и восстановления АТФ. Такая адаптация организма (увеличение запасов АТФ/КрФ и повышение ферментативной активности) достигается путем сбалансированной тренировочной программы, включающей как аэробные, так и спринтерские тренировки.

Фосфатная система называется анаэробной, потому что в ресинтезе АТФ не учавствует кислород, и алактатной, поскольку не образуется молочная кислота.

Кислородная система

Кислородная, или аэробная, система является наиболее важной для спортсменов на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени.

Кислородная система обеспечивает организм, и в частности мышечную деятельность, энергией посредством химического взаимодействия пищевых веществ (главным образом, углеводов и жиров) с кислородом. Пищевые вещества поступают в организм с пищей и откладываются в его хранилищах для дальнейшего использования по необходимости. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Запасы гликогена могут сильно варьироваться, но в большинстве случаев их хватает как минимум на 60-90 мин работы субмаксимальной

интенсивности. В то же время запасы жиров в организме практически неисчерпаемы.

Углеводы являются более эффективным "топливом" по сравнению с жирами, так как при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода. Поэтому в условиях нехватки кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов ограничены, ограничена и возможность их использования в видах спорта на выносливость. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу.

Вклад жиров и углеводов в энергообеспечение нагрузки зависит от интенсивности упражнения и тренированности спортсмена. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Таким образом, тренированный человек будет более экономично расходовать энергию, так как запасы углеводов в организме небезграничны.

Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека. Чем больше потребление кислорода во время выполнения длительной работы, тем выше аэробные способности. Под воздействием тренировок аэробные способности человека могут вырасти на 50%.

Окисление жиров для энергии происходит по следующему принципу:

Жиры + кислород + АДФ → углекислый газ + АТФ + вода

Полученный в ходе реакции окисления углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз) протекает по более сложной схеме, в которой задействуются две последовательные реакции:

Первая фаза:

глюкоза + АДФ → молочная кислота + АТФ

Вторая фаза:

молочная кислота + кислород +АДФ → углекислый газ +АТФ + вода

1. Анаэробный креатинфосфатный механизм.

В достижении высоких показателей, большое значение имеют факторы энергообеспечения мышечной деятельности. При мышечном сокращении непосредственным источником энергии является расщепление АТФ (аденозитрифосфорная кислота) при этом АТФ теряет одну энергетически богатую группу и превращается в аденезиндифосфорную (АДФ) и фосфорную кислоты. В мышечных клетках запас АТФ невелик. После потери АТФ, ее запасы должны немедленно восстановится. В случае недостатка кислорода, один из путей восстановления (ресинтеза) АТФ и АДФ связан с использованием креатинфосфата (КрФ), находящегося в мышечном волокне и имеющего фосфатную группу.

КрФ + АДФ = АТФ + креатин

Анаэрбный механизм ресинтеза АТФ может работать до тех пор, пока не будет исчерпан КрФ в мышечных волокнах. Уровень запаса КрФ повышается во время спринтерских тренировок. Креатинфосфатный механизм энергообепечения быстро исчерпывается, после чего энергообеспечение идет за счет других механизмов.

2.Анаэрбный гликолитический механизм.

Другой путь ресинтеза АТФ – гликолиз. Как и креатинфосфатный механизм, он анаэробный, и может быть источником энергообеспечения лишь недолго. При гликолизе АТФ обновляется за счет ферментативного расщепления глюкозы и гликогена до молочной кислоты. Сначала углеводы расщепляются до пировиноградной кислоты. Создающиеся при этом ферментативные группы переходят в АДФ которая превращается после этого в АТФ. Пировиноградная кислота вступает в реакцию и превращается в молочную кислоту. Интенсивное накопление и создание молочного долга, при одновременном исчерпании запасов гликогена – это основной фактор, который лимитирует мышечную деятельность и сопутствует развитию усталости.

3.Аэробный механизм.

В мышцах, обновление АТФ происходит при помощи кислорода. Аэробный механизм может обеспечивать менее интенсивный процесс работы, но более длительный. Организм спортсмена в это время находится в стойком состоянии – молочная кислота не накапливается и кислородный долг не создается. Окислительная система обеспечивает мышцы энергией с помощью процессов окисления жиров и углеводов кислородом из воздуха. Углеводы являются более выгодным источником энергии, в условиях недостаточного снабжения организма кислородом, потому что для их окисления необходимо меньшее количество кислорода, чем для окисления жиров. Например, при работе невысокой интенсивности (до 50% МПК) окисление происходит за счет окисления жиров. При более интенсивной работе, доля участия в энергообеспечении жиров – уменьшается, а углеводов – увеличивается. Белки тоже могут использоваться для энерготворения. Но преимущественно те, которые могут трансформироваться в глюкозу или другие продукты процесса окисления.

3. Мощность и емкость путей энергообеспечения работ

Возможности каждого из указанных энергетических механизмов, определяется мощностью (скоростью освобождения энергии в метаболических процессах), и объемности, которая определяется величиной достигаемых для использования субстрактых фондов.

Обеспечить действующие органы большим количеством энергии за минимальное время способны креатинофосфокиназная реакция и использование запасов АТФ тканей. В энергообеспечении работы максимальной интенсивности решающую роль играют анаэробные алактатные источники. Анаеробные гликотические источники связаны с запасами гликогена в мышцах, который расщепляется с созданием АТФ и КФ. Но в отличие от алактатных анаэробных источников, этот путь энерготворения имеет более замедленное действие, меньшую мощность, но более высокую выносливость. Аэробные источники энергообеспечения имеют меньшую мощность, но обеспечивают проведение работы на протяжении длительного времени, так как их емкость очень велика.

При нормальном питании в мышцах человека находится около 500гр. гликогена. Это основной резерв энергообеспечения мышечной деятельности. В жировой ткани (триглицериды) находятся большие запасы химической энергии, которая мобилизуется во время длительной работы. Однако для освобождения энергии триглицериды должны пройти сложный путь превращения в жирные кислоты, которые попадают в кровоток и используются в процессе аеробного метаболизма. В процессе освобождения энергии глюкоза содержащаяся в гликогене мышц и печени, или жирная кислота окисляется до СО2 и воды. Этот процесс называется аэробным метаболизмом, осуществляется в два этапа, и достигается при помощи серии последовательных превращений при участии большого количества ферментов. На первом этапе, после двенадцати последовательных реакций метаболизма глюкозы, создается пируват. На втором этапе, при достатке кислорода, пируват поступает в митохондрии и полностью окисляется до СО2 и воды. При недостатке кислорода, или его отсутствии, пируват превращается в молочную кислоту. Количество АТФ, которое получается в результате аэробного окисления и анаэробного гликолиза, разное. При полном окислении одной молекулы глюкозы до СО2 и воды, освобождается 39 молекул АТФ. При процессе гликолиза, при использовании 1 молекулы глюкозы создается всего 3 молекулы АТФ. В процессе анаэробного гликолиза, очень велика скорость создания АТФ, при этом освобождается большое количество энергии. Одновременно тратятся запасы гликогена. В результате анаэробного гликолиза создается молочная кислота и протоны.

Аэробные источники допускают окисление жиров и углеводов кислородом воздуха. Аэробные процессы проходят постепенно, их максимум достигается через несколько минут после начала процесса. Благодаря большим запасам глюкозы и жиров в организме и неограниченным возможностям потребления кислорода из атмосферного воздуха, аэробные источники, дают возможность выполнять работу на протяжении длительного времени. Имея высокую экономичность, их емкость очень велика. Основными источниками в энергообеспечении кратковременной высокоэффективной работы являются анаэробные алактатные источники. Немедленный ресинтез АТФ обеспечивается креатинфосфатом мышц. В мышцах человека имеется достаточное количество креатинфосфата для поддержания постоянного уровня АТФ в мышечных клетках на протяжении 5 – 8 сек. Используется креатинфосфатный механизм для мгновенного ресинтеза АТФ, что дает время разворачиванию более сложного гликолитического процесса. Общий мышечный запас фосфогенов может быть использован за несколько секунд высокоинтенсивной работы. Истощение запасов КрФ приводит к сильному снижению мощности работы. Это происходит по тому что гликолиз не может обеспечить достаточное количество АТФ необходимой для растрат в мышцах. В соревнованиях, в которых выполняются кратковременные работы максимально возможной интенсивности, решающую роль играет высокая мощность анаэробных алактатных источников. Крайне важна их роль в легкоатлетическом спринте, легкоатлетических прыжках, метаниях, тяжелой атлетике, плавании на 50м., а также при выполнении кратковременных, высокоинтенсивных действий в сложно-координационных видах спорта, спортивных единоборствах, спортивных играх. Анаэробные лактатные источники энергии играют решающую роль в энергообеспечении работы, которая имеет продолжительность от 30сек. до 6мин. Именно они обусловливают выносливость в беге на 400, 800 и 1500м., в плавании на 100 и 200м. Аэробный путь энергообеспечения является основным во время длительной работы: плавании на 800 и 1500м., беге на 5000 и 10000м. и марафонском беге.

При менее длительной работе, которая обеспечивается преимущественно анаэробными источниками, большое значение имеют и аэробные источники. Существенное преимущество имеет даже частичное освобождение энергии аэробным путем. Во-первых АТФ создается экономичнее – расщепляется меньше гликогена. Во-вторых для обеспечения доставки кислорода должен увеличиваться мышечный кровоток, что в свою очередь позволит продуктам распада быстрее диффундировать в кровяное русло и убираться.

Способность к длительному выполнению работы с помощью каких либо источников энерготворения, определяется размерами соответствующих субстратных фондов, и эффективностью их использования, что проявляется в скорости врабатывания, утилизации и экономичности. В отношении алактатных анаэробных источников проблема быстрого достижения максимальных показателей мощности (врабатывания) не стоит. Для лактатных анаэробных и особенно аэробных источников, время достижения максимальных показателей мощности является важным фактором ее эффективности. Параметром обозначающим эффективность энергообеспечения и выносливости спортсмена при длительной работе, является способность к утилизации функционального потенциала, которая оценивается по показателям достижения порога анаэробного обмена (ПАНО). О нарастании порога анаэробного обмена, свидетельствует увеличение концентрации лактата в крови. Привести к значительному увеличению ПАНО способны: повышение приспособительских возможностей кислородно-транспортной системы и изменение мышечной ткани под влиянием специальных тренировок.

4. Техника движенческих действий и тактика

высокой психической стойкостью, демонстрируя выдающиеся спортивные результаты, доводят себя до сверх глубоких степеней исчерпания функциональных резервов, достигая нарушений в деятельности вегетативных систем, которые граничат и часто превышают представления о возможностях человеческого Выносливость зависит от умения экономно расходовать запас энергии. Основные факторы экономичности – это совершенство техники движений и избранный тактический вариант. При выполнении даже тяжелой работы, движения должны быть свободными, не напряженными. Скованность движений вызывает излишнюю скованность мышц-антагонистов. По этому во многих видах спорта, основным признаком высшего мастерства является умение расслаблять мышцы, которые не принимают участия в выполнении основных двигательных действий. Для спортсменов очень важно научится расслаблять мышцы лица. Если спортсмен научится это делать, то и другие мышцы, не принимающие участия в работе, тоже будут менее напряжены. Благодаря этому спортсмен будет экономичнее расходовать энергию, медленнее утомляться, лучше восстанавливать силы после работы. С точки зрения экономичности, и излишние, и скованные движения, одинаково вредны. В спортивной практике бытует мнение, что стойкость двигательных навыков – это необходимое условие спортивного мастерства. Но анализ техники пловцов высокого класса, говорит о том, что даже они не могут сберечь одинаковые характеристики движений на протяжении всего периода прохождения дистанции. Основные технические характеристики, на протяжении соревнований, претерпевают значительных изменений. Что позволяет спортсменам сохранять заданную скорость, не смотря на прогрессирующие утомление.

Мышечная работа, интенсивность которой неизменна, требует наименьших энергозатрат. Поэтому спортсменам в циклических видах спорта, до недавнего времени рекомендовали поддерживать постоянную скорость от старта до финиша. Но такая техника не всегда обеспечивает наивысшую продуктивность. Она продуктивна только при мышечной работе, которая длится более 2мин.. При менее длительных упражнениях, оптимальна техника «раскладки скорости». Она характеризуется высокой стартовой скоростью, и постепенным ее снижением по мере исчерпания запасов энергосистем. Для более полного исчерпания энергетического потенциала, с первых секунд упражнения, необходимо поставить энергетические системы в наиболее тяжелые условия. По мере увеличения интенсивности мышечной работы, энергорастраты возрастают не пропорционально интенсивности, а намного больше. Поэтому увеличение интенсивности движений всегда сопровождается снижением экономичности движений.

Экономичность двигательных действий – это комплексный показатель, который обусловлен функциональной и технической экономичностью.

Функциональная экономичность обусловлена согласованностью в работе вегетативных систем и способностью продолжительное время работать в устойчивом состоянии (потребление кислорода отвечает кислородному запросу) при высоком уровне потребления кислорода. Применение метода непрерывного стандартизированного упражнения, с постепенным повышением интенсивности от умеренной до пороговой, способствует развитию функциональной экономичности.

Техническая экономичность обусловлена рациональной биомеханической структурой движений и их автоматизацией. Автоматизация движений помогает устранению лишних напряжений, а в следствие этого и уменьшению энергозатрат.

Значительное влияние на проявление выносливости имеют личностные качества спортсмена и его психическая стойкость в стрессовых ситуациях, характерных для соревновательной деятельности. Целеустремленность, настойчивость, выдержка, уверенность в своих силах, способность переносить значительные отрицательные изменения, нарастание кислородного долга, повышение концентрации молочной кислоты в крови и так далее, играют большую роль в демонстрации высоких показателей выносливости и спортивном мастерстве в целом. В наше время, в финалах больших состязаний, принимают участие спортсмены с приблизительно равной физической и технической подготовкой, придерживаются одинаковой тактики. В сложных условиях спортивной борьбы, чаще всего решающими являются именно психические способности.

Фактор генотипа (наследственности) и среды.

Общая (аэробная) выносливость в некоторой мере обусловлена влиянием наследственных факторов. Генетический фактор существенно влияет на развитие анаэробных возможностей организма. На статическую выносливость,наследственность имеет тоже большое влияние. Для динамической силовой выносливости, влияния наследственности и среды примерно одинаково. На женский организм наследственные факторы больше влияют при субмаксимальной мощности, а на мужской – при работе умеренной мощности.

18. Биоэнергетическое обеспечение мышечной деятельности. Соотношение между путями ресинтеза АТФ при выполнении физических нагрузок различного характера. Зоны относительной мощности работы. В организме постоянно поддерживается энергетический баланс поступления и расхода энергии. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного катаболизма (процесса расщепления сложных компонентов до простых веществ), поступающих с пищей белков, жиров, углеводов. При окислении выделяется; а) 1г.белка, 4,1 ккал энергии, б) 1г.углеводов, 4,1 ккал, в) 1г.жира 9,3 ккал.

В процессе биологического окисления эта энергия высвобождается и используется, прежде всего, для синтеза АТФ и КрФ (энергопродукция), которая, как говорилось выше, осуществляется 2-я путями;

1.АНАЭРОБНЫМ (за счет АТФ, КрФ и глюкоза),2.АЭРОБНЫМ (за счет окисления углеводов, а затем жиров).

Аэробный путь ресинтеза АТФ (синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) – это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнмаютсядва атома водорода (2протона и 2 электрона) и по дыхательной цепи передаются на малекулярный кислород – О2, доставляемый кровью мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяются при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез 3 молекул АТФ.

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является СО2. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения мышц кислородом.

Максимальная мощность. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограниченыдоставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возвожно выполнение физических нагрузок только умеренной мощности.

Время развертывания – 3-4 мин. У хорошо тренированных спортсменок может быть около 1 мин. Такое большое время объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки мин. Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Крепса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение продолжительного времени. Что является положительным фактором для гимнасток, особенно значительную роль это играет при многоборье. Однако значительным недостатком аэробного образования АТФ считается большое время развертывания (3-4 мин.) и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная худ. Гимнастике, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную млщность.

Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислород – транспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечно – сосудистой систем организма гимнасток.

Анаэробные пути ресинтеза АТФ (креатинфосфатный, гликолитический) являются дополнительными способами образования АТФ в тех случаях, когда основной путь получения АТФ – аэробный не может обеспечить мышечную деятельность необходимым количеством энергии. Это бывает на первых мин. любой работы, когда тканевое дыхание еще полностью не развернулось, а также при выполнении физических нагрузок любой мощности.

В мышечных клетках всегда имеется креатинфосфат – соединеие, содержащее фосфатную группу, связанную с остатком креатина макроэргической связью.(15-20 ммоль/кг. В покое).Креатинфосфат обладает большим запасом энергии и высоким средством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющиеся в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина АТФ.При мышечной работе активность креатинкеназы значительно возрастает за счет активирующего действия на нее ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз. Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатина. Образование креатина присходит без участия ферментов, спонтанно. Частично запасы креатинфосфата могут восстанавливаться и при мышечной работе умеренной мощности, при которой за счет тканевого дыхания АТФ синтезируется в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов и на восполнение запасов креатинфосфата реакция может включаться многократно.Образование креатина присходит в печени с использованием 3 аминокислот: глицина, метионина и аргинина. Спортсмены для повышения в мышцах концентрации креатинфосфата используют в качестве пищевых добавок препараты глицина и метионина.

Максимальная мощность – 900-1100 кал./мин кг., что в 3 раза выше соответствующего показателя для аэробного ресинтеза.

Время развертывания – всего 1-2с. Исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1-2 с., и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью.

Время работы с максимальной скоростьювсего лишь 8-10 с., что связанно с небольшими исходными запасами креатинфосфата в мышцах.Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развертывания и высокая мощность, что имеет крайне важное значение для скоростно – силовых видов спорта (х. гимнастика). Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8-10 с., к концу 30-й с. его скорость снижается вдвое. Анаэробная реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности, таких как прыжки, броски и т.д. в худ. гимнастике. Креатинфосфатная реакция может неоднократно включаться во время выполнения физ.нагрузок, что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения во время выполнения соревновательных упражнений. 5-20 ммоль/кг. атную группу, связанную с остатком креатина макроэргической связью.(ских нагрузок любой мощности.ой путь получен

Механизмы энергообеспечения организма человека при мышечной работе.

Любая мышечная деятельность сопряжена с использованием энергии, Непосредственным источником которой является АТФ (аденозинтрифосфорная кислота). АТФ называют универсальным источником энергии. Все осталь­ные энергопроцессы направлены на воспроизводство и поддержание её уровня. АТФ во время мышечной работы восстанавливается с такой же скороростью, как и расщепляется. Восстановление АТФ может осуществляться двумя спос-ми: анаэробным (в ходе реакции без кислорода) и аэробным (с различ­ным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата. Готового для синтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях синтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно || с нринтерском темпе пробежать 800 м). Мышечная работа очень высокой ин-м интенсивности осуществляется в анаэробном режиме, когда синтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для г.к ми 1,1 АТФ, используя процесс гликолиза - превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные Кислые продукты - молочная (лактат) и пировиноградная кислоты.



Гликолиз обеспечивает работоспособность организма в течение 2-4 ми-н т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных - креатин-фосфата), в крови снижается уровень глюкозы, в печени - гликогена.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатин­фосфата и синтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к синтезу АТФ проходят в митохондриях. В обычных условиях работает часть митохондрий, по мере увеличения потребности мышц в энергии в процессе синтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к синтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности - убыстряется темп их обновления.

Если работоспособность во время деятельности спринтерского характера определяется возможностями анаэробной системы энергообразования, то работоспособность на выносливость обуславливается способностью синтезировать АТФ в аэробном режиме. Следовательно, потенциальные возможности для выполнения аэробной работы в большей степени определяются наличием кислорода.

Интенсивность и продолжительность нагрузки имеет обратную взаимосвязь. То есть, когда дистанция или время работы увеличиваются, спортсмен снижает свою интенсивность или скорость. Например, бегун не может бежать марафон (42,2 км) так же быстро, как 10000 м. Для каждой заданной дистанции или продолжительности нагрузки вы можете работать только с определенной интенсивностью, выражаемой в процентах от вашего МПК.

Использование аэробной и анаэробной систем при различных видах физической деятельности

Схема 12-3. Если спринтерский бег на 100 м считается чисто анаэробным упражнением, а марафон чисто аэробным, то большинство других видов физической активности используют АТФ из обеих систем. Спортсменам следует тренировать обе системы в соответствии с требованиями их вида спорта.

Аэробная система не может поддерживать одинаковый уровень интенсивности на всех дистанциях. Хорошо подготовленный бегун на средние и длинные дистанции может бежать 1500 м с интенсивностью 100% от своего МПК. На дистанции 5000 м он способен работать с интенсивностью 95% МПК. На дистанции 10 км - с интенсивностью 90% МПК.

Существует еще одна причина, почему во время длительного упражнения на выносливость организм не способен работать близко к своей аэробной мощности на протяжении всей дистанции. При длительной работе, длящейся более 90-120 минут, запасы гликогена в мышцах постепенно снижаются, в связи с чем падает и интенсивность нагрузки.

Факторы, влияющие на вид используемого топлива при физической нагрузке Какой источник энергии будут использовать ваши мышцы во время нагрузки определяется целым рядом факторов. К ним относятся интенсивность нагрузки,

продолжительность нагрузки, а также уровень тренированности.

Мышечный гликоген является основным источником углеводов в организме человека (300-400 г углеводов или 1200-1600 ккал), следом идет печень (75-100 г или 300-400 ккал), а затем глюкоза крови (25 г или 100 ккал).

Интенсивность нагрузки

Интенсивность нагрузки играет очень важную роль в выборе источника энергии для ваших мышц. Высокоинтенсивная и кратковременная работа (бег на 100-200м) поддерживается благодаря анаэробной системе энергообразования. В этом случае в качестве источника энергии может быть использована только глюкоза, полученная главным образом из распада мышечного гликогена.

При анаэробном распаде глюкозы мышечный гликоген утилизируется в 18 раз быстрее, чем при аэробном. Более стремительный распад мышечного гликогена будет происходить также во время высокоинтенсивной нагрузки (свыше 70% МПК), когда в помощь к аэробной системе ресинтеза АТФ подключается анаэробная.

Длительная смешанная анаэробно-аэробная работа (футбол, баскетбол, интервальные нагрузки в беге или плавании) также приводит к быстрому распаду мышечного гликогена.

Мышечный гликоген и кровяная глюкоза обеспечивают половину всей энергии во время аэробной работы умеренной интенсивности (60% МПК или ниже) и обеспечивают почти всю энергию во время интенсивной работы (свыше 80% МПК).

Работа низкой и умеренной интенсивности (до 60% МПК) может практически полностью поддерживаться за счет аэробной системы. Гормональные изменения, которые происходят при физической нагрузке - повышение уровня адреналина и снижение уровня инсулина - стимулируют ваши мышцы и жировую ткань к расщеплению жира на жирные кислоты. Жирные кислоты, извлекаемые из внутримышечного жира и жировой ткани, обеспечивают около половины энергии при физической работе низкой и умеренной интенсивности. Остальная часть энергии освобождается из гликогена

и глюкозы.

Существует несколько причин, почему жир не может использоваться в качестве источника энергии во время высокоинтенсивной нагрузки (около 70% МПК). Во-первых, расщепление жира до АТФ - это медленный процесс, который не способен образовывать АТФ так быстро, чтобы обеспечить энергией высокоинтенсивную нагрузку.

Во-вторых, глюкоза дает больше калорий на литр кислорода, чем жиры. Глюкоза поставляет 5,10 ккал на литр кислорода, а жиры - 4,62 ккал. При нехватке кислорода во время высокоинтенсивной нагрузки использование глюкозы приносит мышцам явное преимущество, поскольку для синтеза энергии требуется меньше кислорода.

Переход от использования жиров к использованию глюкозы по мере нарастания интенсивности нагрузки также частично связан с накоплением молочной кислоты. Молочная кислота затрудняет утилизацию жиров мышцами во время высокоинтенсивной нагрузки. Таким образом, мышцам приходится больше полагаться на гликоген для синтеза энергии.

Продолжительность нагрузки

Продолжительность нагрузки также определяет источник энергии, который будет использоваться во время физической работы. Чем дольше вы упражняетесь, тем больше вклад жира в общее энергообразование. При нагрузке умеренной интенсивности, длящейся от 4 до 6 часов, на долю жира может приходиться до 60-70% всех потребностей в энергии.

С увеличением длительности нагрузки интенсивность неминуемо снижается

в связи с уменьшением поставки гликогена из мышц. При снижении запасов гликогена жиры дают основную часть энергии, необходимую для поддержания работы. Однако использование жира в качестве источника энергии ограничено при интенсивности нагрузки свыше 60% МПК. Кроме того, высвобождение энергии из жиров (сжигание жира) невозможно без расщепления определенного количества углеводов. То есть, в этом смысле, "жир сгорает в углеводном огне".

Исходя из вышесказанного, следует, что мышечный гликоген является доминирующим источником энергии для большинства типов физической нагрузки. Необходимо, по меньшей мере, 20 минут для того, чтобы жир стал использоваться мышцами как источник энергии в форме свободных жирных кислот. Большинство людей тренируются не достаточно долго, для того чтобы сжигать значительное количество жира во время самой тренировки. Кроме того, люди тренируются и соревнуются с интенсивностью 70% от МПК или выше, что ограничивает возможности использования жира в качестве источника энергии.

Однако это вовсе не означает, что вы должны тренироваться подолгу, чтобы терять жир. Когда тренировка создает калорийный дефицит, организм уже после нее вытягивает энергию из имеющихся жировых запасов, чтобы восполнить этот дефицит.

Уровень тренированности

Уровень подготовки спортсмена также влияет на выбор источника энергии для физической работы. Аэробные тренировки на выносливость повышают МПК, что, в свою очередь, приводит к более высокой утилизации жира, поскольку большой показатель МПК дает возможность при том же самом абсолютном уровне нагрузки в большей степени задействовать аэробный механизм для энергопроизводства.

Тренировки на выносливость повышают также анаэробный порог, при котором начинает накапливаться молочная кислота. Молочная кислота ускоряет распад гликогена, препятствуя использованию жира как источника энергии. Высокий анаэробный порог дает вам возможность при том же самом абсолютном уровне нагрузки больше использовать жир и меньше гликоген.

Тренировки на выносливость вызывают также несколько важных адаптационных изменений в мышцах, которые способствуют более высокой утилизации жира. Сжигая больше жира, вы тратите меньше гликогена. Эффект "гликогеновой экономии" крайне выгоден, поскольку запасы мышечного гликогена ограничены, а запасы жира практически неисчерпаемы.

Наконец, тренировки на выносливость увеличивают способность мышц запасать гликоген. Таким образом, тренировки на выносливость дают двойную выгоду - в начале нагрузки вы имеете более высокие запасы гликогена, а в ходе нагрузки расходуете их медленнее.

Энергодающим субстратом для обеспечения основной функции мышечного волокна - его сокращения - является аденозинтрифосфорная кислота - АТФ.

Энергообеспечение по способам реализации условно делят на анаэробное (алактатно-лактатное) и аэробное.

Эти процессы могут быть представлены следующим образом:

Анаэробная зона энергообеспечения:

АДФ + Фосфат + свободная энергия <=> АТФ

Фосфокреатин + АДФ <=> креатин + АТФ

2 АДФ <=> АМФ + АТФ

Гликоген (глюкоза) + Фосфат + АДФ <=> лактат + АТФ

Аэробная зона энергообеспечения:

Гликоген (глюкоза), жирные кислоты + Фосфат +О2С02 + Н2 0 + АТФ

Источники энергии -- это фосфагены, глюкоза, гликоген, свободные жирные кислоты, кислород.

Введение АТФ извне в достаточных дозах невозможно (обратное является широко распространенным заблуждением), следовательно, необходимо создать условия для образования повышенного количества эндогенного АТФ. На это направлена тренировка - сдвиг метаболических процессов в сторону образования АТФ, а также обеспечение ингредиентами.

Скорость накопления и расхода энергии значительно различаются в зависимости от функционального состояния спортсмена и вида спорта. Определенный вклад в процесс энергообеспечения, его коррекцию, возможен со стороны фармакологии.

В начале 70-х годов было доказано, что сокращение ишемизированного миокарда прекращается при исчерпании клеточных запасов фосфокреатина (ФК), несмотря на то, что в клетках остается неизрасходованным около 90% АТФ. Эти данные говорят о том, что АТФ неравномерно распределена внутри клетки. Доступным является не весь АТФ, содержащийся в мышечной клетке, а лишь его небольшая часть, локализованная в миофибриллах. Результаты исследований, выполненных в последующие годы, показали, что связь между внутриклеточными пулами АТФ осуществляют ФК и изоферменты креатинкиназы. В нормальных условиях молекула АТФ, выведенная из митохондрии, передает свою энергию креатину, который под воздействием митохондриального изофермента креатинкиназы трансформируется в ФК. Последний мигрирует к местам локальных креатинки-назных реакций (сарколемма, миофибриллы, саркоплазматический ретикулум), где другие изоферменты креатинкиназы обеспечивают ресинтез АТФ из ФК и АДФ.

Освобождающийся при этом креатин возвращается в митохондрию, а энергия АТФ используется по назначению, в том числе и для мышечного сокращения (см. схему). Скорость транспорта энергии внутри клетки по фосфокреатиновому пути значительно превосходит скорость диффузии АТФ в цитоплазме. Именно поэтому снижение содержания ФК в клетке и приводит к депрессии сократимости даже при сохранении значительного внутриклеточного запаса основного энергетического субстрата - АТФ.

По современным представлениям, физиологическая роль ФК состоит в эффективном обеспечении внутриклеточного транспорта энергии от мест ее производства к местам использования.

В аэробных условиях основными субстратами для синтеза АТФ являются свободные жирные кислоты, глюкоза и лактат, метаболизм которых в норме обеспечивает продукцию около 90% общего количества АТФ. В результате ряда последовательных каталитических реакций из субстратов образуется ацетил-коэнзим А. Внутри митохондрий в ходе цикла трикарбоновых кислот (цикла Кребса) происходит расщепление ацетил-коэнзима А до углекислоты и атомов водорода. Последние переносятся на цепь транспорта электронов (дыхательную цепь) и используются для восстановления молекулярного кислорода до воды. Энергия, образующаяся при переносе электронов по дыхательной цепи, в результате окислительного фосфорилирования трансформируется в энергию АТФ.

Уменьшение доставки кислорода к мышцам влечет за собой быстрый распад АТФ до АДФ и АМФ, затем распад АМФ до аденозина, ксантина и гипоксантина. Нуклеотиды через саркоплазматическую мембрану выходят в межклеточное пространство, что делает невозможным ресинтез АТФ.

В условиях гипоксии интенсифицируется анаэробный процесс синтеза АТФ, основным субстратом для которого служит гликоген. Однако в ходе анаэробного окисления образуется значительно меньше молекул АТФ, чем при аэробном окислении субстратов метаболизма. Энергия АТФ, синтезируемого в анаэробных условиях, оказывается недостаточной не только для обеспечения сократительной функции миокарда, но и для поддержания градиентов ионов в клетках. Уменьшение содержания АТФ сопровождается опережающим снижением содержания ФК.

Активизация анаэробного гликолиза влечет за собой накопление лактата и развитие ацидоза. Следствием дефицита макроэргических фосфатов и внутриклеточного ацидоза является нарушение АТФ-зависимых механизмов ионного транспорта, ответственных за удаление ионов кальция из клеток. Накопление ионов кальция в митоходриях приводит к разобщению окислительного фосфорилирования и усилению дефицита энергии. Увеличение концентрации ионов кальция в саркоплазме при недостатке АТФ способствует образованию прочных актиномиозиновых мостиков, что препятствует расслаблению миофибрилл.

Дефицит АТФ и избыток ионов кальция в сочетании с повышением продукции и увеличением содержания в мышце катехоламинов стимулирует «липидную триаду». Развитие «липидной триады» вызывает деструкцию липидного бислоя клеточных мембран. Все это приводит к контрактуре миофибрилл и их разрушению. Роль «ловушки ионов кальция» выполняют неорганический фосфат и другие анионы, накапливающиеся в клетке при гипоксии.

Фармобеспечение по зонам осуществляется следующим образом:

В анаэробной (алактатной ) зоне для обеспечения скоростной, максимально мощной, непродолжительной работы (несколько секунд), вводятся фосфагены, в частности неотон (см. главу «Макроэрги (фосфагены)»). фармакологический спорт допинг реабилитация

В анаэробной (лактатной ) зоне с накоплением молочной кислоты при работе субмаксимальной мощности организм также должен быть обеспечен фосфокреатином, максимально обеспечен возможностью полностью утилизировать кислород, терпеть кислородную задолженность (антигипок-санты), утилизировать «отходы» (см. главу «Коррекция лактатных возможностей организма»), а также иметь запасы гликогена и возможность пополнять в процессе работы углеводные запасы.

В аэробной (кислородной) зоне необходимо обеспечить: постоянное поступление углеводов в кровь, максимальное окисление жирных кислот (липотропные средства) и нейтрализацию образующихся при этом свободных радикалов (антиоксиданты), а также максимальное использование поступающего в организм кислорода (антигипоксанты).